The Sparse Grid Interpolant

نویسنده

  • John Burkardt
چکیده

Smolyak’s sparse grid construction is commonly used in a setting involving quadrature of a function of a multidimensional argument over a product region. However, the method can be applied in a straightforward way to the interpolation problem as well. In this discussion, we outline a procedure that begins with a family of interpolants defined on a family of nested tensor product grids, and demonstrate how the Smolyak rule can be used to generate an interpolant of known precision. We also consider the issues that arise when a family of non-nested tensor product grids are used, such as sequences of Gauss-Legendre quadrature abscissas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Basis Change and Regularization for Sparse-grid Interpolating Polynomials

Sparse-grid interpolation provides good approximations to smooth functions in high dimensions based on relatively few function evaluations, but in standard form is expressed in Lagrange polynomials and requires function values at all points of a sparse grid. Here we give a block-diagonal factorization of the matrix for changing basis from a Lagrange polynomial formulation of a sparse-grid inter...

متن کامل

A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the “best M -terms” based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have...

متن کامل

Multilevel Sparse Kernel-Based Interpolation

A multilevel kernel-based interpolation method, suitable for moderately high-dimensional function interpolation problems, is proposed. The method, termed multilevel sparse kernelbased interpolation (MLSKI, for short), uses both level-wise and direction-wise multilevel decomposition of structured (or mildly unstructured) interpolation data sites in conjunction with the application of kernel-base...

متن کامل

Parameter Identification with Adaptive Sparse Grid-based Optimization for Models of Cellular Processes

Identifying parameter values in mathematical models of cellular processes is crucial to ascertain if the hypotheses reflected in the model structure is consistent with the available experimental data. Due to the uncertainty in the parameter values, partially attributed to the necessary model abstraction of any cellular process, parameters are pragmatically estimated by varying their values to m...

متن کامل

An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method

A new approach to modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adapt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012